Simulating SIA using the Chemistry Transport Model MOCAGE version R2.15.0

نویسندگان

  • J. Guth
  • B. Josse
  • V. Marécal
  • M. Joly
چکیده

In this study we develop a Secondary Inorganic Aerosol (SIA) module for the chemistry transport model MOCAGE developed at CNRM. Based on the thermodynamic equilibrium module ISORROPIA II, the new version of the model is evaluated both at the global scale and at the regional scale. 5 The results show high concentrations of secondary inorganic aerosols in the most polluted regions being Europe, Asia and the eastern part of North America. Asia shows higher sulfate concentrations than other regions thanks to emissions reduction in Eu-rope and North America. Using two simulations, one with and the other without secondary inorganic aerosol 10 formation, the model global outputs are compared to previous studies, to MODIS AOD retrievals, and also to in situ measurements from the HTAP database. The model shows a better agreement in all geographical regions with MODIS AOD retrievals when introducing SIA. It also provides a good statistical agreement with in situ measurements of secondary inorganic aerosol composition: sulfate, nitrate and ammonium. In addition, 15 the simulation with SIA gives generally a better agreement for secondary inorganic aerosols precursors (nitric acid, sulfur dioxide, ammonia) in particular with a reduction of the Modified Normalised Mean Bias (MNMB). At the regional scale, over Europe, the model simulation with SIA are compared to the in situ measurements from the EMEP database and shows a good agreement 20 with secondary inorganic aerosol composition. The results at the regional scale are consistent with those obtained with the global simulations. The AIRBASE database was used to compare the model to regulated air quality pollutants being particulate matter, ozone and nitrogen dioxide concentrations. The introduction of the SIA in MOCAGE provides a reduction of the PM 2.5 MNMB of 0.44 on a yearly basis and even 0.52 on 25 a three spring months period (March, April, May) when SIA are maximum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First implementation of secondary inorganic aerosols in the MOCAGE version R2.15.0 chemistry transport model

In this study we develop a secondary inorganic aerosol (SIA) module for the MOCAGE chemistry transport model developed at CNRM. The aim is to have a module suitable for running at different model resolutions and for operational applications with reasonable computing times. Based on the ISORROPIA II thermodynamic equilibrium module, the new version of the model is presented and evaluated at both...

متن کامل

Global model simulations of air pollution during the 2003 European heat wave

Three global Chemistry Transport Models – MOZART, MOCAGE, and TM5 – as well as MOZART coupled to the IFS meteorological model including assimilation of ozone (O3) and carbon monoxide (CO) satellite column retrievals, have been compared to surface measurements and MOZAIC vertical profiles in the troposphere over Western/Central Europe for summer 2003. The models reproduce the meteorological feat...

متن کامل

A new tropospheric and stratospheric Chemistry and Transport Model MOCAGE-Climat for multi-year studies: evaluation of the present-day climatology and sensitivity to surface processes

We present the configuration of the Météo-France Chemistry and Transport Model (CTM) MOCAGE-Climat that will be dedicated to the study of chemistry and climate interactions. MOCAGE-Climat is a state-of-the-art CTM that simulates the global distribution of ozone and its precursors (82 chemical species) both in the troposphere and the stratosphere, up to the mid-mesosphere (∼70 km). Surface proce...

متن کامل

Identification of critical sediment source areas across the Gharesou watershed, Northeastern Iran, using hydrological modeling

In this study, the process-based watershed model, Soil and Water Assessment Tool (SWAT), was used for simulating hydrology and sediment transport in the Gharesou watershed and for identifying critical areas of soil erosion and water pollution. After model calibration and uncertainty analysis using SUFI-2 (Sequential Uncertainty Fitting, ver. 2) method, the outputs of the calibrated model were u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015